Skip to main content

GRAPHENE | GRAPHENE TECHNOLOGY | GRAPHENE THE MATERIAL OF THE FUTURE | GRAPHENE REVIEW | GRAPHENE PROPERTIES | GRAPHENE PRODUCTION

The graphene is a substance which has a single-layer crystal lattice of carbon atoms, which is unusual since it is different from all of the materials of its kind. Several researchers have identified a way of making this substance, which allows them to use it in various fields and especially for the high-speed electronic devices.

01-graphene layer-graphene lattice parameters-graphene growth-Graphene_from_gases_for_new,_bendable_electronics_

Graphene Definition:

Graphene is defined as a one atom thin sheet of carbon atoms arranged in a Hexagonal format or a flat monolayer of carbon atoms that are tightly packed into a 2D honeycomb lattice.

01-graphene hexagonal layer-graphene lattice parameters-graphene growth

History:

In October 2010, two University of Manchester (U.K.) scientists, Andre Geim and Konstantin Novolselov, were awarded the 2010 Nobel Prize in physics for their research on graphene. Graphene is a one-atom-thick sheet of carbon whose strength, flexibility, and electrical conductivity have opened up new horizons for high-energy particle physics research and electronic, optical, and energy applications.

01-flexible graphene sheet-with silver electrodes printed on it-touch screen graphene sheets-transparent electrodes-flexible transparent electronics

Graphene properties:

Graphene oxide, a single-atomic-layered material made by reacting graphite powders with strong oxidizing agents, has the ability to easily convert into graphene a low-cost carbon-based transparent and flexible electronics.

Graphene Oxide:

Graphene oxide has been known in the scientific world for more than a century and was largely described as hydrophilic, or attracted to water. These graphene oxide sheets behave like surfactants, the chemicals in soap and shampoo that make stains disperse in water.

01-mechanosynthesis-graphene bonding-graphene scaling-graphene sheet material formation-graphene zipper like bond rearrangement-graphene_into_nanotube
Mechanical Properties:



Young’s Modulus:

01-various material properties-Youngs modulus of different materials-Graphene properties

01-graphene electrical properties-graphene electrical conductivity-1000 times faster than silicon-bendable graphene battery concept-flexible-graphene-battery-concept

1. Graphene sheets stack to form graphite with an interplanar spacing of 0.335 nm, which means that a stack of 3 million sheets would be only one millimeter thick.

2. Graphene is a Zero Gap Semiconductor. So it has a high electron mobility at room temperature. It’s a Superconductor. Electron transfer is 100 times faster then Silicon.

3. Graphene has a record breaking strength of 200 times greater than steel, with a tensile strength of 130GPa.

4. Graphene can be used to create circuits that are almost superconducting, potentially speeding electronic components by as much as 1000 times.

5. Graphene electrodes used in lithium-ion batteries could reduce recharge times from two hours to about 10 minutes.

Graphene Production:

01-chemical vapor deposition techniques-chemical vapour deposition-CVD -graphene production-graphene fabrication-discovery of graphene

Chemical Vapor Deposition (CVD) and Molecular Beam Epitaxy (MBE) are two other potential routes to Graphene growth.

Applications:

01-graphene applications-graphene touch pad electronics gadgets-touch phones made from graphene-graphene technology-flexiphone
New devices like Touch screens, Micro Displays and Monitors
Chip Making, Circuit Designs
Solar cells
Micro Fuel Cells
Air Bag Deployment Systems and Gyroscopes in Car Electronic Stability Control
Pressure Sensors, Micro Tips & probes

Comments

Popular posts from this blog

BRAKE PERFORMANCE TEST OF AN AUTOMOBILE | BRAKE SERVICE LAWS AND REGULATIONS WORLD WIDE

Automotive Service Technicians and Mechanics Brake Performance Test of an Automobile The brake performance test of FMVSS 105 defines the minimum needs for the brake system on any vehicle driven on the road. The technician should know a bit about the performance test, not for the sake of being able to quote government regulations. Parts of the test define the kind of performance a brake system should deliver after the vehicle serviced. The brake performance test divided into eighteen stages and begins with a new set of brakes on a test vehicle. The first stage is to install the test instruments on the vehicle and verify that they operate correctly. The vehicle then goes through the test called “first effectiveness test”. This test is performed with new brake linings before they have had a chance to burnish in. Rules and Regulations for driving an automobile The vehicle makes six stops from 30 mph and six stops from 60 mph. One of the stops from 30 mph made in 57 feet or less. One s...

What Is Mechanical engineering ?

Mechanical engineering is the discipline that applies the principles of engineering, physics, and materials science for the design, analysis, manufacturing, and maintenance of mechanical systems. It is the branch of engineering that involves the design, production, and operation of machinery. It is one of the oldest and broadest of the engineering disciplines. The engineering field requires an understanding of core concepts including mechanics, kinematics, thermodynamics, materials science, structural analysis, and electricity. Mechanical engineers use these core principles along with tools like computer-aided design, and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, watercraft, robotics, medical devices, weapons, and others. Mechanical engineering emerged as a field during the industrial revolution in Europe in the 18th century; however, its development can be trac...